宋巖,哈爾濱工業(yè)大學(xué)威海校區(qū)教授。

中文名

宋巖

性別

畢業(yè)院校

遼寧大學(xué)

職業(yè)

教師

主要成就

高溫鈦合金電子結(jié)構(gòu)理論設(shè)計 攀登計劃子課題

職稱

教授

教育經(jīng)歷

1985.9~1988.6遼寧大學(xué)物理系理論物理專業(yè) 理學(xué)碩士

1994.9~1997.6中國科學(xué)院金屬研究所工學(xué)博士

工作經(jīng)歷

1985.9~1988.6遼寧大學(xué)物理系理論物理專業(yè)理學(xué)碩士

1988.7~1994.9沈陽藥科大學(xué)基礎(chǔ)部講師 (1990)

1994.9~1997.6中國科學(xué)院金屬研究所工學(xué)博士

1997.7~1999.3中國科學(xué)院金屬腐蝕與防護研究所金屬腐蝕與防護國家重點實驗室, 博士后

1999.3~1999.6中國科學(xué)院金屬研究所, 副研 (1999)

1999.7~2000.6倫敦大學(xué)瑪麗皇后學(xué)院材料系Royal Society KC-Wong Research Fellow

2000.7 ~至今倫敦大學(xué)瑪麗皇后學(xué)院材料系Research Fellow

2006~至今哈爾濱工業(yè)大學(xué)(威海)材料科學(xué)與工程學(xué)院教授,博士生導(dǎo)師

研究領(lǐng)域

能源緊張是21世紀(jì)世界面臨的首要問題之一。世界每年消耗15兆瓦的能量,未來15年內(nèi)美歐能源需求增長30%,而亞洲則可達60%。以態(tài)勢,本世紀(jì)末全球溫度將上升1.4至5.8度,這將導(dǎo)致全球環(huán)境的毀滅性的破壞。鑒于此因,所以這一領(lǐng)域?qū)儆谑澜绨l(fā)達國家重點研究領(lǐng)域之一。美, 英等國家都投入相當(dāng)?shù)娜肆? 物力進行研究。從事的儲能材料的研究(從機制上講它涉及到量子物理和量子化學(xué), 同時它還涉及到材料的制備等過程),對鎂氫化物儲氫性能和Li-N-H體系鍵相互作用機制的研究取得了突破性進展,研究論文分別發(fā)表于Phys. Rev. B和J. Phys. Chem. B。

在研項目

a)儲氫材料的電子結(jié)構(gòu)理論設(shè)計

b)鈉米碳結(jié)構(gòu)材料儲氫機制的電子結(jié)構(gòu)理論研究

c)儲氫材料的新型制備

d)原子間相互作用勢第一性原理理論計算

主要科研項目

a)高溫鈦合金電子結(jié)構(gòu)理論設(shè)計 攀登計劃子課題(95-Yu-41)骨干

b)材料計算設(shè)計與性能預(yù)測基礎(chǔ)問題 973計劃 骨干

c)新型鈦基材料設(shè)計與制備 海外青年學(xué)者合作研究基金 骨干

d)鈦基合金及鋁化物的第一性原理模擬與設(shè)計 Royal Society – Joint Research Grand Scheme(Q751) Investigator

e) First Principles Electronic Simulation for Alloy Design and Propery Prediction

Royal Society – K.C.Wong Education Foundation Investigator

以下為英國國家科學(xué)基金資助項目(Engineering and Physical Sciences Research Council, EPSRC)

f) Predictive Mode Ling and Mechanochemical Processing of New Mg-based Hydrogen Storage Materials GR/R82074/01(P) Investigator

g) UK Sustainable Hydrogen Energy Consortium GR/S26965/01 Investigator

h) Platform: Powder-based Processing and Modeling at the Center for Materials Research GR/S57636/01 Investigator

學(xué)術(shù)成績

1. 合金力學(xué)性質(zhì)的計算與合金設(shè)計

成功的將電子結(jié)構(gòu)理論應(yīng)用于結(jié)構(gòu)鈦合金和醫(yī)用鈦合金力學(xué)性質(zhì)的計算和合金設(shè)計,系統(tǒng)地計算了金屬的彈性模量和理論強度(Phys. Rev. B 59, 1422, 1999; Phil, Mag. A 81, 321, 2001), 研究了合金元素對合金相穩(wěn)定性,彈性模量及強度的影響(Phil,Mag.A 82.1345,2002),并將理論研究結(jié)果應(yīng)用于設(shè)計低彈性模量/高強度的醫(yī)用鈦合金(J.Computer. Aided Mater.Design 6,355,1999)

2. 鎂氫化物儲氫性能的計算與預(yù)測

應(yīng)用第一性原理方法,研究了鎂基儲氫合金的儲氫性能,計算了合金元素對MgH2穩(wěn)定性的影響(Phys.Rev.B 69,094205,2004),預(yù)測了MgH2一種新的亞穩(wěn)相的存在(Phys.Rev.Lett.審稿中),在理論研究的指導(dǎo)下,成功地在實驗上將MgH2的分解溫度從430°降至150°(Int.J.Hydrogen Energy 29,73,2004), 為MgH2作為儲氫載體的實用化取得了突破性進展。

3.Li-N-H體系鍵相互作用機制的研究

系統(tǒng)地計算了Li-N-H體系,Li2NH,LiNH2,LiH和NH3的電子結(jié)構(gòu)和體系的總能量,應(yīng)用諧振子振動模型。首次在理論上確定了Li-N,N-H鍵間的相互作用強度,在此基礎(chǔ)上提出了LiNH2分解反應(yīng)機制模型,從理論上澄清了實驗上關(guān)于LiNH2分解反應(yīng)機制(一次直接分解反映〈Nature 420,302,2002〉和二次過渡分解反應(yīng)〈J.Phys.Chen.B 108.7887,2004〉)的爭論,為進一步的合金設(shè)計打下了堅實的基礎(chǔ).

4. 論著成果

1) J. H. Dai, Y. Song, and R. Yang, Influence of impurity on phase stability of martensites in titanium, Philo. Mag., (2012) DOI: 10.1080/14786435.2012.669075.

2) Y. Song, J. H. Dai, and R. Yang, Mechanism of oxygen adsorption on surfaces of γ-TiAl, Surf. Sci. (2012) 606, 852-857.

3) Y. Song, J. H. Dai, and R. Yang, First principles investigation of interaction of oxygen with low index surfaces of ?-TiAl, Materials Science Forum (2012) 706-709, 1106-1114.

4) Y. L. Hao, R. Yang, Y. Song, Y. Y. Cui, D. Li, and A. Niinomi, Formation of point defects in TiAl and NiAl, Intermetallics, 12, 951-956, 2004.

5) Y. L. Hao, R.Yang, Y. Song, Y. Y. Cui, D. Li, and M. Niinomi, Concentration of point defects and site occupancy behavior in ternary NiAl alloys, Mater. Sci. Eng. A 365, 85-89, 2004.

6) Y. L. Hao, R. Yang, Q. M. Hu, D. Li, Y. Song, and M. Niinomi, Bonding characteristics of micro-alloyed B2 NiAl in relation to site occupancies and phase stability, Acta Mater. 51, 5545-5554, 2003.

7) Y. L. Hao, Y. Song, R.Yang, Y. Y. Cui, D. Li, and M. Niinomi, Concentration of point defects in binary NiAl, Philo. Mag. Lett. 83, 375-384, 2003.

8) Y. Song, R.Yang, and Z. X. Guo, First principles estimation of bulk modulus and theoretical strength of titanium alloys, Mater. Trans. 43, 3028-3031, 2002.

9) Y. Song, Z. X. Guo, R. Yang, and D. Li, First principles study of influence of alloying elements on TiAl: cleavage strength and deformability, Comput. Mater.. Sci. 23, 55-61, 2002.

10) Y. Song, Z. X. Guo, and R. Yang, Influence of interstitial elements on the bulk modulus and theoretical strength of alpha-titanium: a first-principles study, Philo. Mag. A 82, 1345-1359, 2002.

11) Y. Song, Z. X. Guo, R. Yang, and D. Li, First principles study of site substitution of ternary elements in NiAl, Acta Mater. 49, 1647-1654, 2001.

12) Y. Song, R. Yang, D. Li, and Z. X. Guo, A first-principles study of the theoretical strength and bulk modulus of hcp metals, Philo. Mag. A 81, 321-330, 2001.

13) Y. Song, R. Yang, D. Li, Z. Q. Hu, and Z. X. Guo, A first principles study of the influence of alloying elements on TiAl: site preference, Intermetallics 8, 563-568, 2000.

14) Y. Song, R. Yang, D. Li, W. T. Wu, and Z. X. Guo, Calculation of theoretical strengths and bulk moduli of bcc metals, Phys. Rev. B 59, 14220-14225, 1999.

15) Y. Song, D. S. Xu, R. Yang, D. Li, W. T. Wu, and Z. X. Guo, Theoretical study of the effects of alloying elements on the strength and modulus of beta-type bio-titanium alloys, Mater. Sci. Eng. A 260, 269-274, 1999.

16) Y. Song, R. Yang, D. Li, Z. Q. Hu, and Z. X. Guo, Calculation of bulk modulus of titanium alloys by first principles electronic structure theory, J. Computer-Aided Mater. Design, 6, 355-362, 1999.

17) Y. Song, R. Yang, D. Li, W. T. Wu, and Z. X. Guo, First principles study of influence of alloying elements on TiAl: Lattice distortion, J. Mater. Res. 14, 2824-2829, 1999.

18) B. Shi, Y. Song, J. H. Dai, and H. Z. Yu, Influence of dopants Ti and Al on dehydrogenation characteristics of Mg(BH4)2: Electronic structure mechanisms, J. Phys. Chem. C, 2012, accepted.

19) J. H. Dai, Y. Song, and R. Yang, Intrinsic Mechanisms on enhancement of hydrogen desorption from MgH2 by (001) surface doping, Int. J. Hydrogen Energy., 36, 12939-12949, 2011.

20) J. H. Dai, Y. Song, and R. Yang, Adsorption of water molecule on (001) and (110) surfaces of MgH2, Surf. Sci., 605, 1224-1229, 2011.

21) J. H. Dai, Y. Song, and R. Yang, First Principles Study on Hydrogen Desorption from a Metal (Al, Ti, Mn, Ni) Doped MgH2 (110) Surface, J. Phys. Chem. C., 114, 11328-11334, 2010.

22) Y. Song, J. H. Dai, X. M. Liang and R. Yang, Influence of dopants Ti and Ni on bonding interactions and dehydrogenation properties of lithium alanate, Phys. Chem. Chem. Phys., 12, 10942-10949, 2010.

23) Y. Song, J. H. Dai, R. Yang, Influence of dopants Ti and Ni on dehydrogenation properties of NaAlH4: Electronic structure mechanisms, J. Phys. Chem. C, 113, 10215-10221, 2009.

24) Y. Song and R. Yang, Decomposition mechanism of magnesium amide Mg(NH2)2, Int. J. Hydrogen Energy, 34, 3778-3783, 2009.

25) 代建紅, 李成桂, 宋巖, 摻雜元素Ti和Ni對NaAlH4儲氫性能影響的第一原理研究, 化學(xué)學(xué)報,67, 1447-1454, 2009.

26) Y. Song, W. C. Zhang, and R. Yang, Stability and bonding mechanism of ternary (Mg, Fe, Ni)H2 hydrides from first principles calculations, Int. J. Hydrogen Energy, 34, 1389-1398, 2009.

27) Y. Song, R. Singh and Z.X. Guo, A First-Principles Study of the Electronic Structure and Stability of a Lithium Aluminium Hydride for Hydrogen Storage, J. Phys. Chem. B, 110, 6906-6910, 2006.

28) Y. Song and Z.X. Guo, Electronic Structure, Stability and Bonding of the Li-N-H Hydrogen Storage System, Phys. Rev. B, 74, 195120-7, 2006.

29) Y. Song and Z.X. Guo, Metastable MgH2 Phase Predicted by First Principles Calculations, Appl. Phys. Lett., 89, 111911-3, 2006.

30) Y. Song , Z.X. Guo and R. Yang, Influence of Selected Alloying Elements on the Stability of Magnesium Dihydride for Hydrogen Storage Applications: A First Principles Investigation, Phys. Rev. B, 69, 094205-11, 2004.

31) Y.Song and Z.X. Guo, Influence of Titanium on the Hydrogen Storage Characteristics of Magnesium Hydrides: A First-Principles Study, Mat. Sci. Eng.-A, 365, 73-79, 2004.

32) C. X. Shang, M. Bououdina, Y. Song and Z.X. Guo, Mechanical Alloying and Electronic Simulations of (MgH2+M) Systems (M=Al,Ti,Fe,Ni,Cu and Nb) for H Storage, Int. J. Hydrogen Energy, 29, 73-80, 2004.

33) C. X. Shang, M. Bououdina, Y. Song and Z.X. Guo, Structural Stability and Dehydrogenation of (MgH2+Al,Nb) Powder Mixtures during Mechanical Alloying, Mater. Transactions, 44, 2356-2362, 2004.

34) Z.X. Guo, M. Bououdina, Y. Song and C. Shang, Mechanical Alloying and Electronic Simulation of Mg-Based Hydrogen Absorbing Materials, in Advanced Materials and Processing, eds. S. Hanada, Z. Zhong, S.W. Nam and R.N. Wright, JIM, 2001, pp.2917-2920.