聚合作用
聚合酶結(jié)構(gòu)圖
在引物 RNA'-OH末端,以dNTP為底物,按模板DNA上的指令由DNApolⅠ逐個將核苷酸加上去,就是DNApolⅠ的聚合作用。酶的專一性主要表現(xiàn)為新進入的脫氧核苷酸必須與模板DNA配對時才有催化作用。dNTP進入結(jié)合位點后,可能使酶的構(gòu)象發(fā)生變化,促進3'-OH與5'-PO4結(jié)合生成磷酸二酯鍵。若是錯誤的核苷酸進入結(jié)合位點,則不能與模板配對,無法改變酶的構(gòu)象而被3'-5'外切酶活性位點所識別并切除之。3'5'外切酶活性──校對作用
這種酶活性的主要功能是從3'→5'方向識別和切除不配對的DNA生長鏈末端的核苷酸。當(dāng)反應(yīng)體系中沒有反應(yīng)底物dNTP時,由于沒有聚合作用而出現(xiàn)暫時的游離現(xiàn)象,從而被3'→5'外切酶活性所降解。如果提高反應(yīng)體系的溫度可以促進這種作用,這表明溫度升高使DNA生長鏈3'末端與模板發(fā)生分離的機會更多,因而降解作用加強。當(dāng)向反應(yīng)體系加入dNTP,而且只加放與模板互補的上述核苷酸才會使這種外切酶活性受到抑制,并繼續(xù)進行DNA的合成。由此推論,3'→5'外切酶活性的主要功能是校對作用,當(dāng)加入的核苷酸與模板不互補而游離時則被3'→5'外切酶切除,以便重新在這個位置上聚合對應(yīng)的核苷酸。在某些T4噬菌體突變株中DNA復(fù)制的真實性降低,而易發(fā)生突變,從此突變株分離得到的聚合酶的3'→5'外切酶活性很低。相反,另外一些具有抗突變能力的T4突變株中的聚合酶的3'→5'外切酶活性比野生型高得多,因此,其DNA復(fù)制真實性好,變異率低??梢姡?'→5'外切酶活性對DNA復(fù)制真實性的維持是十分重要的。 聚合酶分子反應(yīng)示意圖
5'3'外切酶活性──切除修復(fù)作用5'→3'外切酶活性就是從5'→3'方向水解DNA生長鏈前方的DNA鏈,主要產(chǎn)生5'-脫氧核苷酸。這種酶活性只對DNA上配對部份(雙鏈)磷酸二酯鍵有切割活力作用,方向是5'→3'。每次能切除10個核苷酸,而且DNA的聚合作用能刺激5'→3'外切酶活力達(dá)10倍以上。因此,這種酶活性在DNA損傷的修復(fù)中可能起著重要作用。對岡崎片段5'末端DNA引物的去除依賴此種外切酶活性。
焦磷酸解作用
DNApolⅠ的這種活性可以催化3'末端焦磷酸解DNA分子。這種作用就是無機焦磷酸分解DNA生長鏈,可以認(rèn)為是DNA聚合作用的逆反應(yīng),而且這種水解DNA鏈作用需要有模板DNA的存在。(dNMP)n XPPi←(dNMP)n-x X(dNPPP)→DNA 焦磷酸交換作用
催化dNTP末端的PPi同無機焦磷酸的交換反應(yīng)。反應(yīng)式為32P32Pi dNPPP←dNP32P32P PPi→DNA
最后兩種作用,都要求有較高濃度的PPi,因此,在體內(nèi)由于沒有足夠高的PPi而無重要意義。DNApolⅠ的DNA聚合酶活性和5'→3'外切酶活性協(xié)同作用,可以使DNA鏈上的切口向前推進,即沒有新的DNA合成,只有核苷酸的交換。這種反應(yīng)叫缺口平移(Nicktranslation)。當(dāng)雙鏈DNA上某個磷酸二酯鍵斷裂產(chǎn)生切口時,DNApoIⅠ能從切口開始合成新的NDA鏈,同時切除原來的舊鏈。這樣,從切口開始合成了一條與被取代的舊鏈完全相同的新鏈。如果新?lián)饺氲拿撗鹾塑账崛姿釣棣?32P-dNTP,則重新合成的新鏈即為帶有同位素標(biāo)記的DNA分子,可以用作探針進行分子雜交實驗。 盡管DNApolⅠ是第一個被鑒定的DNA聚合酶,但它不是在腸桿菌中DNA復(fù)制的主要聚合酶。主要證據(jù)如下:純化的DNApolⅠ催化dNTP摻入的速率為667堿基/分,而體內(nèi)DNA合成速率要比此高二倍數(shù)量級;大腸桿菌的一個突變株中,此酶的活力正常,但染色體DNA復(fù)制不正常;而在另一些突變株中,DNApolⅠ的活力中只是野生型的1%,但是DNA復(fù)制卻正常,而且此突變株增加了對紫外線、烷化劑等突變因素的敏感性。這表明該酶與DNA復(fù)制關(guān)系不大,而在DNA修復(fù)中起著重要的作用。 一些特定的DNA聚合酶對于化學(xué)修飾性核苷分子顯示出驚人的耐受性,從而為高度功能化的核酸分子的有效合成提供了令人激動的新機遇。