太陽的總光度L=4×1033erg.s-1如果這個輻射光度靠引力為能源來維持,那么持續(xù)的時間是:
很多證明表明,太陽穩(wěn)定的保持著今天的狀態(tài)已有5×109年了,因此,星坯階段只能是太陽形成像今天這樣的穩(wěn)定狀態(tài)之前的一個短暫過渡階段。這樣提出新問題,星坯引力收縮是如何停止的?此后太陽輻射又是以什么為能源? 主序星階段在收縮過程中密度增加,我們知道ρ∝r-3,由式(4),rc∝r3/2,所以rc比 r減小的更快,收縮氣云的一部分又達到新條件下的臨界,小擾動可以造成新的局部塌縮。如此下去在一定的條件下,大塊氣云收縮為一個凝聚體成為原恒星,原恒星吸附周圍氣云后繼續(xù)收縮,表面溫度不變,中心溫度不斷升高,引起溫度、密度和氣體成分的各種核反應。產生熱能使氣溫升的極高,氣體壓力抵抗引力使原恒星穩(wěn)定下來成為恒星,恒星的演化是從主序星開始的。
恒星的成份大部分是H和He,當溫度達到104K以上,即粒子的平均熱動能達1eV以上,氫原子通過熱碰撞就充分的電離了(氫的電離能是13.6eV),在溫度進一步升高后,等離子氣體中氫核與氫核的碰撞就可能引起核反應。對純氫的高溫氣體,最有效的核反應系列是所謂的P-P鏈: 其中主要是2D(p,γ)3He反應。D含量只有氫的10-4左右,很快就燃完了。如果開始時D比3He含量多,則反應生成的3H可能就是恒星早期3He的主要來源,由于對流到達恒星表面的這種3He,有可能還保留到現在。
Li,Be,B等輕核和D一樣結合能很低,含量只是H 的2×10-9K左右,當中心溫度超過3×106K就開始燃燒,引起(p,α)和(p,α)反應,很快成為3He和4He。中心溫度達到107K,密度達到 105kg/m3左右時,產生的氫轉化為He的41H→4He過程。這主要是p-p和CNO循環(huán)。同時含有1H和4He是發(fā)生p-p鏈反應,有以下三個分支組成:
p-p1(只有1H) p-p2(同時有1H、4He) p-p3
或假設1H 和4He的重量比相等。隨溫度升高,反應從p-p1逐漸過渡到p-p3,
而當T>1.5×107K時,恒星中燃燒H的過程就可過渡到以CNO循環(huán)為主了。
當恒星內混雜有重元素C和N時,他們能作為觸媒使1H變?yōu)?He,這就是CNO循環(huán),CNO循環(huán)有兩個分支: 或總反應率取決于最慢的14N(p,γ)15O、15N的(p,α)和(p,γ)反應分支比約為2500:1。
這個比值幾乎與溫度無關,所以在2500次CNO循環(huán)中有一次是CNO-2。
在p-p鏈和CNO循環(huán)過程中,凈效果是H燃燒生成He:
在釋放出的26.7MeV能量中,大部分消耗給恒星加熱和發(fā)光,成為恒星的主要來源。 主序星階段前面我們提到恒星的演化是從主星序開始的,那么什么是主星序呢?等H穩(wěn)定地燃燒為He時,恒星就成了主序星。人們發(fā)現有百分之八十至九十的恒星都是主序星,他們共同特征是核心區(qū)都有氫正在燃燒,他們的光度、半徑和表面溫度都有所不同,后來證明:主序星的定量上差別主要是質量不同,其次是他們的年齡和化學成份,太陽這段歷程約千萬年。 觀察到的主序星的最小質量大約為0.1M⊙。模型計算表明,當質量小于0.08M⊙時,星體的收縮將達不到氫的點火溫度,從而形不成主序星,這說明對于主序星它有一個質量下限。觀察到的主序星的最大質量大約是幾十個太陽質量。理論上講,質量太大的恒星輻射很強,內部的能量過程很劇烈,因此結構也越不穩(wěn)定。但是理論上沒有一個質量的絕對上限。 當對某一星團作統(tǒng)計分析時,人們卻發(fā)現主序星有一個上限,這說明什么?我們知道,主序星的光度是質量的函數,這函數可分段的用冪式表示:
L∝Mν
其中υ不是一個常數,它的值大概在3.5到4.5之間。M大反映主序星中可供燃燒的質量多,而L大反映燃燒的快,因此主序星的壽命可近似用M與L的商標來標志:
T∝M-(ν-1)
即主序星壽命隨質量增大而按冪律減小,如果整個星團已存在的年齡為T,那就可以由T與M的關系式求出一個截止質量MT。質量大于MT的主序星已結束核心的H燃燒階段而不是主序星了,這就是觀察到由大量同年齡星組成的星團有上限的原因。 現在我們就討論觀測到的恒星中大部分是主序星的原因,表1根據一25M⊙的恒燃燒階段 點火溫度(K) 中心溫度(g.cm-3) 持續(xù)時間(yr)
H 4×107 4 7×106
He 2×108 6×102 5×105
C 7×108 6×105 5×102
Ne 1.5×109 4×106 1
O 2×109 1×107 5×10-2
Si 3.5×109 1×108 3×10-3
燃燒階段的總壽命 7.5×106
星演化模型,列出了各種元素的點火溫度及燃燒所持續(xù)的時間。從表上看出,原子序數大的和有更高的點火溫度,Z大的核不僅難于點火,點火后燃燒也更劇烈,因此燃燒持續(xù)的的時間也就更短。這顆25M⊙的 表1 25M⊙恒星演化模型,模型星的燃燒階段的總壽命為7.5×106年,而其中百分之九十以上的時間是氫燃燒階段,即主星序階段。從統(tǒng)計角度講,這表明找到一顆處于主星序階段的恒星幾率要大。這正是觀察到的恒星大多數為主序星的基本原因。