在十九世紀末,原子理論逐漸盛行,根據(jù)原子理論的看法,物質(zhì)都是由微小的粒子——原子構(gòu)成。比如原本被認為是一種流體的電,由湯普森的陰極射線實驗證明是由被稱為電子的粒子所組成。因此,人們認為大多數(shù)的物質(zhì)是由粒子所組成。而與此同時,波被認為是物質(zhì)的另一種存在方式。波動理論已經(jīng)被相當深入地研究,包括干涉和衍射等現(xiàn)象。由于光在托馬斯·楊的雙縫干涉實驗中,以及夫瑯和費衍射中所展現(xiàn)的特性,明顯地說明它是一種波動。 不過在二十世紀來臨之時,這個觀點面臨了一些挑戰(zhàn)。1905年由阿爾伯特·愛因斯坦研究的光電效應展示了光粒子性的一面。隨后,電子衍射被預言和證實了。這又展現(xiàn)了原來被認為是粒子的電子波動性的一面。 這個波與粒子的困擾終于在二十世紀初由量子力學的建立所解決,即所謂波粒二象性。它提供了一個理論框架,使得任何物質(zhì)在一定的環(huán)境下都能夠表現(xiàn)出這兩種性質(zhì)。量子力學認為自然界所有的粒子,如光子、電子或是原子,都能用一個微分方程,如薛定諤方程來描述。這個方程的解即為波函數(shù),它描述了粒子的狀態(tài)。波函數(shù)具有疊加性,即,它們能夠像波一樣互相干涉和衍射。同時,波函數(shù)也被解釋為描述粒子出現(xiàn)在特定位置的幾率幅。這樣,粒子性和波動性就統(tǒng)一在同一個解釋中。 之所以在日常生活中觀察不到物體的波動性,是因為他們的質(zhì)量太大,導致特征波長比可觀察的限度要小很多,因此可能發(fā)生波動性質(zhì)的尺度在日常生活經(jīng)驗范圍之外。這也是為什么經(jīng)典力學能夠令人滿意地解釋“自然現(xiàn)象”。反之,對于基本粒子來說,它們的質(zhì)量和尺度決定了它們的行為主要是由量子力學所描述的,因而與我們所習慣的圖景相差甚遠。
1800年,托馬斯·楊發(fā)表了《在聲和光方面的實驗與問題》的論文,認為光與聲都是波,光是以太介質(zhì)中傳播的縱振動,不同顏色的光與不同頻率的聲音是相類似的。他在分析了水波的疊加現(xiàn)象之后說,在聲波疊加的情況下,可以產(chǎn)生的加強和減弱,出現(xiàn)復合聲調(diào)和拍頻。尤其重要的是,他提出了“干涉”的概念。 1801年,他在英國皇家學會上宣讀了關于薄膜色的論文。論文進一步擴充和發(fā)展了惠更斯的波動說,明確地提出了光具有頻率和波長,完善了光波的概念。他比較圓滿地解釋了牛頓環(huán)的干涉現(xiàn)象,認為“當有不同起源的兩個振動運動或者完全相同,或者在方向很接近時,那么它們的共同作用等于它們每一個振動單獨所發(fā)生的作用之和?!边@在實際上已經(jīng)提出了光的相干條件及干涉原理。 這一年,他在發(fā)表于《哲學會報》上的論文中,全面地闡述了干涉原理:“同一束光的兩不同部分以不同的路徑,要么完全一樣地、要么在方向上十分接近地進入眼睛,在光線的路程差是某個長度的整數(shù)倍的地方,光就被加強,而在干涉區(qū)域中間狀態(tài),光將最強;對于不同顏色的光束來說,這個長度是不同的?!?/span>
1802年,托馬斯·楊在英國皇家學會講演時,引用自己所做的雙孔(雙縫)干涉實驗。他說:“為使這兩部分波粒二象性
光在屏幕上引起的效果疊加起來,需要使來自同一光源、經(jīng)過不同路徑的光到達同一區(qū)域,而不使其相離散,如有離散,也能根據(jù)回折、反射或折射把光從一方或從兩方重合起來,將它們的效果疊加。但是,最簡單的辦法是將平行光通過兩個相距很近的針孔。針孔作為新的光源,從那里發(fā)出了球面光波,照射到屏幕上,光的暗影對稱地向兩側(cè)散開。然而,屏幕與小孔的距離越遠,從小孔射來的光就越按相同的角度延伸與擴張。同時,小孔間的距離越近,從它們射出的光就越按比例擴張,這兩部分光疊合后,在屏幕上正對兩小孔連線的中心處最明亮。兩側(cè)部分,光從兩個小孔到達各點有一定的路程差,若路程差是光波波長的1倍、2倍、3倍……,路程差是光波波長1/2,3/2,5/2倍則屏幕上的這些地方為亮區(qū),并且相鄰的亮區(qū)間的距離相等。另一方 的地方?!边@就是著名的楊氏雙孔雙縫實驗。 托馬斯·楊用紅光照射雙孔,觀察通過雙孔后的光在屏幕上形成的光帶。他遮住一個針孔時,屏上只有一個紅的光強均勻的光點;當兩個孔均不遮掩時,屏上兩個光點重合區(qū)出現(xiàn)了紅黑交替的光帶,紅帶相當明亮,其寬度相等,同時,各黑帶的寬度也相等,并且等于紅帶的寬度。
根據(jù)各種實驗比較,組成極端紅光的波長,在空氣中應為1/36000英寸,極端紫光應為1/60000英寸,準確測得的可見光的波長。在光學發(fā)展史中是具有劃時代意義的。
托馬斯·楊還將干涉原理應用于解釋衍射現(xiàn)象。1803年11月24日,他在講演中提到了光的干涉的一般法則的實驗驗證。對隨著影子出現(xiàn)的有色邊緣進行若干次實驗,便發(fā)現(xiàn)關于光的兩部分的一般法則,有色邊緣是根據(jù)兩部分光的干涉形成的。 第一個實驗將木板套窗打開一個孔,在上面糊上一張厚紙,在厚紙上用針尖鉆個孔,為了觀察方便起見,在木板套窗外的一個適當位置放一個小鏡子,從那里反射的太陽光按水平方向射到對面的墻壁上,并且將1/30英寸細長紙片插入太陽光中觀察。映在墻壁上或放在各種不同距離上的其它厚紙的影子,除了陰影的兩側(cè)邊緣之外,那一影子的自身也同樣被平行的邊緣所分割,其邊緣非常細,它的數(shù)值隨觀察影子的距離而異,影子的中心部分總是呈白色。這些邊緣是通過細紙片的每個側(cè)面的光的兩部分合成的結(jié)果,并且與其說是折射不如說是衍射。 第二個實驗是有直角的交接處的物體形成影子的時候,在通常的外部邊緣上,可以看到增加兩三種顏色的變化。這些,從角的平分線開始向兩側(cè)排列,向著角平分線以凸狀彎曲著。并且離角平分線越遠越細。這些邊緣也是在物體兩側(cè)對影子方向直接彎曲的光疊加的結(jié)果。 托馬斯·楊的實驗一是細竿衍射,實驗二是角衍射。1883年當古伊與1885年維恩在光以大角度斜射時,直接觀察到了邊界波;托馬斯·楊關于衍射中邊界波的觀念得到了證實。
托馬斯·楊對光的本性又作了進一步的爭辯,他說:“固執(zhí)于牛頓的光的理論或現(xiàn)代光學專家的不太普遍的假說的人們,最好是對任何事物都要從他的自身的原理出發(fā),提出實驗的說明。并且,如果他的這種努力失敗的話,他應該承認這些事實,至少應該停止目的在于反對這些事實及其所遵循的理論體系而發(fā)表的演講?!?/span>
從上述實驗或計算可以推論,平行光在傳播方向上的一定距離處,具有相反的性質(zhì),在疊加時,互相中和或互相抵消,光也就消失了。而且,還可以推論,這些性質(zhì)對通過同一介質(zhì)的相干光來說,在離相干光源為某距離的連續(xù)的同心面上交替變化。由測定的一致性與同類現(xiàn)象的相似性,可以下結(jié)論說,這些間隔同薄膜彩色條紋的排列形式有關系。當然,光在密的介質(zhì)中比在疏的介質(zhì)中進行得更緩慢。而它同時也說明,這不是折射朝向密的介質(zhì)的引力的結(jié)果。支持光的粒子說的人們,必須判斷這一理由的關鍵,即哪一方面最弱這一點。但我們知道,聲音在同心的球面上擴大,樂音互相中和,根據(jù)音的不同,由在不同的某一等間隔中,相繼而起的相反性質(zhì)所形成。所以得出聲音同光的性質(zhì)之間有非常相似的結(jié)論,也是完全可以的。 他在解釋光的偏振時,遇到了特殊的困難。這是由于馬呂斯和布儒斯特在光的偏振方面取得重大研究成果后,頑固堅持牛頓的微粒說造成的。本來,偏振現(xiàn)象是橫波的特性,對偏振現(xiàn)象研究越深入就越有利于光的波動理論。這時,只要將惠更斯與托馬斯·楊的“縱波”改成“橫波”,那么其它問題就迎刃而解了。但是,馬呂斯和布儒斯特在波動理論尚未做出這一改變之前,強烈的反對波動理論。托馬斯·楊沒有隱匿困難,更沒有被困難所嚇倒,1811年,他在給馬呂斯的信中說:“你的實驗證明了我所采用的理論不足,但是這些實驗并沒有證明它是錯的”,六年后,他覺察到,若將聲波看成與水波類似的橫波,那么這個困難就可以得到較好的解決。1817年1月12日,他在寫給阿拉果的信中說:“根據(jù)這個學說的原理,所有波都象聲波一樣是通過均勻介質(zhì)以同心球面單獨傳播,在徑向方向上只有粒子的前進或后退運動,以及伴隨它們的凝聚與稀疏。顯然波動說可以解釋橫向振動也在徑向方向上以相等速度傳播,但粒子的運動是在相對于徑向的某個恒定方向上,而這就是偏振?!边@樣,托馬斯·楊根據(jù)波動理論對偏振現(xiàn)象作了最初的解釋。其后,菲涅耳與阿拉果更充分地驗證并解釋了它。 不過在二十世紀來臨之時,這些觀點面臨了一些挑戰(zhàn)。1905年,阿爾伯特·愛因斯坦對于光電效應用光子的概念來解釋,物理學者開始意識到光波具有波動和粒子的雙重性質(zhì)。1924年,路易·德布羅意提出“物質(zhì)波”假說,他主張,“一切物質(zhì)”都具有波粒二象性,即具有波動和粒子的雙重性質(zhì)。根據(jù)德布羅意假說,電子是應該會具有干涉和衍射等波動現(xiàn)象。1927年,克林頓·戴維森與雷斯特·革末設計與完成的戴維森-革末實驗成功證實了德布羅意假說。